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Imperial College London – Zambart 

Workshop on Analysing and modelling epidemic data 

 

 

Practical: Expanding the SIR model. 

Drs Richard Sheppard & Pablo N Perez-Guzman 

Adapted using materials from Prof Nim Arinaminpathy 

 

 

The aims of the practical are:  

• To introduce yourselves to the rationale for expanding a mathematical model.  

• To explore the concepts of constant vs varying hazards in a dynamic transmission 

model. 

 

In this hand-out, generally: 

► Indicates an instruction. 

► Indicates a useful tip or note. 

► Indicates a question.  
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Example 1: open SIR model 

► Navigate to the odin interface https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-

2022/ in Chrome or Safari.  
 
► In the Thursday section, “Expanding the SIR model”, click on “Example 1”.  
 
Thus far, we have been working with a simple SIR model where the population is ‘closed’. 
This means we assume the total number of people in the (N) model remains constant 
throughout the simulations, ‘flowing’ between three compartments: 
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In this sense, the ‘hazards’ of transitioning across model states are unchanged (albeit the 
force of infection is dynamic, given change in model states over time!). However simple, the 
SIR model has been very useful to explore some key concepts of dynamic disease 
transmission. Here, we will expand it to explore concepts of varying hazards.  
 
► In groups of four, discuss what kinds of varying hazards you could incorporate in a 
transmission model to make it useful for analysing an outbreak? How would you adapt the 
model to account for these varying hazards? (5 min) 
 
 
The list can be quite long, but generally we would like to consider 

• Age-stratification: expand model compartments 

• Changing contact-rates (e.g. NPIs): change the value of 𝛽 over time 

• Waning of immunity: flow from R back to S  

• Differential infectivity (i.e. onward transmission) of infectious classes (e.g. vaccinated vs 
unvaccinated): expand model compartments 

• Pathogen mutations: change the value of 𝛽 over time given changes in transmissibility, or 
change IFR given changes in severity 

• Vaccination: expand model compartments, add rate of transition to vaccinated classes 
(age-eligibility?)  
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Before moving on to more complex adaptations, let’s first ‘open up’ the model population. By 
this we mean we need to account for births and background (i.e. all-cause) mortality. Note 
that, in order to do so, we are assuming all new individuals are born into the Susceptible 
compartment, yet all compartments are subject to background mortality. 
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► Code the above ODEs into the Editor tab and compile your code with the parameters 
and initial conditions provided. 
 
► Once you are happy with your code, go to the Visualise tab and run the model for 1,825 
days (5 years). 
 
► Question 1: what do you observe towards the end of the simulations that differs from 
what you have seen thus far by modelling closed populations? Now, rerun the model for 
15,000 days (~41 years). What do you observe? 
 

# Your code should look like this 
deriv(S) <- b * N - beta * (I / N) * S - mu * S  
deriv(I) <- beta * (I / N) * S - (mu + gamma) * I 
deriv(R) <- gamma * I - mu * R 
 
Note that for the case of I we are adding up (mu + gamma), as these are both transition rates 
moving individuals our of I. 
 
At the end of the first simulation, it can be seen the number of susceptible individuals is gradually 
increasing. Despite our assumption of permanent immunity (i.e. people don’t go back from R to S), 
the model is increasing its pool of susceptible due to the birth rate. You can further corroborate this 
if you plot Rt on a secondary Y axis. 
 
For the second model run, at approximately 35 years there is a second outbreak. That is, the pool 
of susceptible individuals increased enough to increase the value of Rt above the epidemic 
threshold. It should be noted, though, Rt increased above 1 well before the second outbreak. This 
is an intrinsic limitation of our model! It is not actually tracking individuals but rates of transition 
between compartments, so the value of I never decreased to 0 but rather very low decimal values. 
We will revisit this during week 2, when we talk about stochasticity. 
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► Go back to the Editor tab and modify your ODEs to allow immunity to wane over time 𝜎.  
 
► Remember this is a new parameter we need to declare. First, declare the parameter by 
typing in the code below at the end of your script exactly as follows: 
waning_t <- user(1) # average number of years natural immunity lasts for 
sigma <- 1 / (waning_t * 365) # natural immunity waning rate (match time frame of the model) 
 
► Second, add the new sigma parameter to your differential equations in the appropriate 
places. 
 
► Once you are happy with your code, compile it and run the model for 500 days. Plot Rt on 
a secondary Y axis again. 
 
► You might find it useful to consider where individuals are flowing out from (-) and where 
are they flowing to (+). 
 
► Question 2: How is Rt changing over the course of the outbreak? How does this 
correspond with changes in the model compartments (I, S, R)? How do changes in those 
compartments impact the underlying force of infection? What happens if you 
increase/decrease the average duration of immunity (plot I only) by 10%? Does varying the 
mean birth rate have the same effect over the model duration (500 days)? Lastly, if you run 
the model for 2000 days with baseline parameters, what do you observe (plot only I)? 
 

 

Your ODEs should now look like this 
deriv(S) <- b * N - mu * S - beta * (I / N) * S + sigma * R 
deriv(I) <- beta * (I / N) * S - (mu + gamma) * I 
deriv(R) <- gamma * I - mu * R - sigma * R 
 
It can be seen that the epidemic peaks (max number in I) at roughly the same time as the value of 
𝑅𝑡  is equal to 1. From this point onward, the epidemic starts to decline. Interestingly, the pool of 
susceptible individuals was matched by the number of individuals who had recovered (and 
therefore were immune) shortly after this point. 
 
You can see how the reduction in the pool of susceptible brings about a decrease in the force of 
infection, despite the proportion of infected in the population continued to increase for a few more 
days. This can be better visualised by setting the y axis to the log scale. At the point in which the S 
and R trajectory lines cross, there is a deceleration in the growth trajectory of the I line, which was 
previously increasing exponentially. Similarly, as the pool of susceptible individuals is “replenished” 
by both births but also those who have transitioned from the recovered compartment, the force of 
infection increases again and a second outbreak is triggered. 
 
With a shorter duration of natural immunity (i.e. smaller value of waning_t) not only is the size of the 
secondary outbreak larger, but it’s faster to take off as individuals are losing their natural immunity 
at a faster rate. The opposite happens with a longer duration of natural immunity. 
 
Given the average life-span of individuals in the model, changing the average birth-rate has no 
impact at all on the timing and size of the secondary outbreak. 
 
After a series of outbreaks (~3) of progressively lower magnitude, the disease reaches an endemic 
equilibrium (i.e. number of individuals in I remains stable at a value greater than 0 as Rt remains 
stable at around 1). 
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Example 2: age-stratified SIR model 
 
Well done! Between yesterday and today, you have been learning about modifications to 
your SIR model to model time-varying hazards. We are now going to account for age, which 
is a key driver of varying hazards in infectious disease transmission. 
 
We know populations don’t mix equally. For example, both younger and older individuals in 
a population tend to interact much more within their age groups. This has important 
implications in the control of infectious diseases, as vaccination campaigns would usually 
account for this to decide who to target in the population. 
 

► Navigate to the odin interface https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-

2022/ in Chrome or Safari.  
 
► In the Thursday section, “Expanding the SIR model”, click on “Example 2”.  
 
This is an example of an age-stratified SIR model, with only three age compartments. Note 
that all compartments in the population are now multiplied by 3! This is because we are 
explicitly accounting for the fact that this is a heterogeneous population of individuals. 
Furthermore, in lines 65-76 we are defining their age-specific force of infection. 
 
► DO NOT RUN THE MODEL YET! Answer Question 3 without running the model. 
 
 

► Question 3: What do the age-specific forces of infection (𝜆1, 𝜆2, 𝜆3) tell you about how 

the population interacts? Assume age groups are 1: children, 2: adults, and 3: the elderly. 
 
 

Firstly, without even looking at the specific values for the parameters used to calculate 𝜆1, 𝜆2, 𝜆3, 

we can see we are assuming that individuals all have the same probability of becoming infected 
upon contact with an infectious individual, an assumption that is quite common in dynamic 
infectious disease models. This is here defined as b, the per contact probability of transmission. 
 
However, what really varies across age groups are their contact patterns. For each age-group pair 
that links the infectee with the infector (e.g. children-children, children-adult, etc.), we calculate a 

value for 𝛽 by multiplying the contact rate by the per contact probability of transmission and the 

age-specific prevalence of infection in the infector population. The age-specific values for lambda, 
thus correspond to the sum of each set of three age-specific 𝛽 values pertaining to an infectee age-
compartment. 

http://www.imperial.ac.uk/cpd/epidemiology
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► Now you can run the model! 
 
► First, hide the pop_n (1,2,3) and lambda_n (1,2,3) variables in the Editor tab. 
 
► Next, go to the Visualise tab and run the model for 200 days. 
 
► Visualise either one age group at a time (e.g. S_1, I_1 and R_1) or one disease stage at 
a time (e.g. I_1, I_2 and I_3). 
 
► Question 4: As a proportion of the total population, which age group is most affected by 
the epidemic? Which age group is most affected when considered as a proportion of the 
population in that age group? Why do you think that is? How do the peaks of the epidemic 
change between age groups and how is this determined? Overall, which age group do you 
think was most affected by this infectious disease? 
 

 

At the peak of the outbreak, 22% (e.g. 220k / 1M) of the infected cases were adults, 7% were 
children and only 3% elderly. However, compared to the population in each age group, 36% (e.g. 
71k / 200k) of children were infected at the peak of the outbreak, compared to 34% of adults and 
24% of elderly. 
 
Most notably, the number of infected cases in each group peaked at slightly different times in the 
outbreak. Both these trends (e.g. proportion affected and timing of the peak) are driven by the 
relation between the heterogenous mixing in the population (i.e. contact rates across and within 
age groups) and the dynamics of disease prevalence for each age group. 
 
In this outbreak, we can see that children were the most affected age group, followed by adults and 

then the elderly. 

 
You can begin to see how accounting for varying hazards is of paramount importance in 
infectious disease modelling. For example, the above disease dynamics would have 
important implications for a vaccination campaign. Consider which age group would you 
target with a vaccine that prevents infection? What if the vaccine was no good at preventing 
infection, but decreases the risk of severe disease and death? 
 
As we have said in this workshop thus far, the choice of model and building in its complexity 
should be driven by the research/policy questions we are aiming to answer. A key question 
is, how fast is the disease spreading; that is, what is its reproduction number and growth 
rate. A simple parametric calculation of 𝑅𝑜 even with just three age compartments would be 
almost impossible to derive by hand. 
 
► In your own time, navigate to the odin interface 

https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-2022/ in Chrome or Safari.  
 
► In the Thursday section, “Expanding the SIR model”, download the script “Example 3” 
and explore the code to derive this disease’ 𝑅𝑜 using the next generation matrix. You will 
need to run this in your own computer in an R-Studio session. 
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