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Background  

In Part 1 of Practical 2, we estimated the average time to recovery and death among patients 

infected with a novel disease. We will now be incorporating this into our cohort model that we 

began developing yesterday.  

 

Objectives 

• Expand cohort model to include recovery and deaths compartment. 

• Parameterise model using estimates from Practical 2 Part 1. 

• Calculate the CFR under different parameter estimates.  

 

Example 1: Expanding our cohort model to a competing risks model (written) 

Because not all patients of a disease will recover, we want to expand our cohort model to 

incorporate the competing risks of recovery or death.  

Recall from yesterday's practical: 

 

 

 

This basic cohort model has only two compartments, 𝐼 and 𝑅 , and is written:  

𝜕𝐼

𝜕𝑡
= −𝛾𝐼 

𝜕𝑅

𝜕𝑡
= 𝛾𝐼 

 

Recall that: 

Infected Recovered 



• Mean duration of infectiousness =
1

𝛾
   

• So, the inverse will be the recovery rate  

𝛾 =
1

𝑚𝑒𝑎𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛 𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 
 

 

 

1. Draw and write out the equations (on paper, no code!) for an extended version of the 

model above which also includes deaths.  

 

Solution: 

 

 

 

We now have three compartments, 𝐼 , 𝑅  and 𝐷 . We write this as follows: 

𝜕𝐼

𝜕𝑡
= −𝛾𝐼 − 𝜇𝐼 

𝜕𝑅

𝜕𝑡
= 𝛾𝐼 

𝜕𝐷

𝜕𝑡
= 𝜇𝐼 

𝛾 continues to correspond to the rate of recovery, while 𝜇 represents the rate of death.  

 

 

  

Infected 

Recovered 

Died 



Example 2: Expanding the cohort model code to a competing risks model (code) 

Now that you have finalised your model design, we want to think about how we adapt the cohort 

model code to incorporate our new compartment.  

Navigate to the odin interface https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-2022/ 

in Chrome or Safari.   

Recall that the SIR model code is as follows: 

 

 

We are going to look at each of the sections in the model in turn.  

 

1. Update the state variables to reflect the inclusion of the Deaths compartment. Note that it 

is not just the deaths compartment that changes, we also have to update the Infected 

compartment to reflect that people can exit this in two ways (e.g., the competing risks).  

Solution: 

 

 

2. Update the initial conditions. 

# state variables 

deriv(I) <- -gamma * I 

deriv(R) <- gamma * I 

# initial conditions of the variables 

initial(I) <- 1000 

initial(R) <- 0 

# input parameters 

recovery_time <-     # mean number of days to recovery 

# calculated parameters 

gamma <- 1 / recovery_time    # recovery rate 

# state variables 

  deriv(I) <- -gamma * I - mu * I 

  deriv(R) <- gamma * I 

  deriv(D) <- mu * I 



Solution: 

 

3. Update the input parameters. 

Solution: 

 

4. Update the calculated parameters. 

Solution: 

 

 

Once you have reached this stage, please ask one of the demonstrators to check your code 

before proceeding to the next sections. 

Solution: 

 

  # initial conditions of the variables 

  initial(I) <- 1e6 

  initial(R) <- 0 

  initial(D) <- 0 

# input parameters 

  recovery_time <- user() 

  death_time <- user() 

# calculated parameters 

  gamma <- 1 / recovery_time # recovery rate 

  mu <- 1 / death_time       # death rate 



 

 

 

  

# state variables 

deriv(I) <- -gamma * I - mu * I 

deriv(R) <- gamma * I 

deriv(D) <- mu * I 

# initial conditions of the variables 

initial(I) <- 1e6 

initial(R) <- 0 

initial(D) <- 0 

# input parameters (insert the values you derived from data in the previous practical) 

recovery_time <- user() 

death_time <- user() 

# calculated parameters 

gamma <- 1 / recovery_time # recovery rate 

mu <- 1 / death_time       # death rate 



Example 3: Running the model 

We are now ready to assess the model output. 

1. Navigate to the ‘Visualise’ tab of the online editor. To run the model, specify the 

parameters estimated in Part 1 of today’s practical (average time to recovery 14 days; 

average time to death 7 days). An end time of 28 days (4 weeks) is sufficient, but you can 

try different values if you have time. 

2. Press run and look at the resulting plot.  

 

Solution: 

 

 

 

Example 4: Interpreting the model output 

We can now evaluate the results of our model to answer the following questions. Recall that the 

values at each point can be obtained by hovering over the image in the editor.  

1. Based on the output, what proportion of the initially infected cohort died before recovering 

over the 4-week period? 

 

Solution: At day 28, ‘665.0142k’ people had died, which equates to 665,014.2 people. Given that 

we began with 1,000,000 people, this means that 665,014.2/1,000,000 = 0.665 of people initially 

infected had died by the end of the period. 

 

 

2.  Using the model parameters, can you calculate the case fatality rate? What do you notice 

about the result? 

 

Solution: Recall that: 



𝛾 =
1

14
 

𝜇 =
1

7
 

The CFR can be estimated as: 

𝐶𝐹𝑅 =
𝜇

𝛾 + 𝜇
 

In this instance, we have that CFR = 0.667. 

 

 

 

3. Calculate the naïve CFR estimated by the model by considering the ratio of cumulative 

deaths over time to the total number of people initially infected. You can do this by 

downloading the model output using the ‘Download’ button on the bottom right of the editor 

and then working in Excel.  What do you notice about the results? 

 

Solution: As time increases, the naïve CFR approaches that we estimated in the previous 

question.  

 

 

 



Example 5: Impact of varying parameters 

Now we want to consider what would happen when we vary the parameters. 

Let us consider a scenario in which the CFR decreased by 50% to 33%.  

1. Assuming that the recovery rate remains stable, what would we need the death rate be in 

order to achieve this lower CFR? (Hint: recall how we calculated the CFR above).  

Solution: 

As 

𝐶𝐹𝑅 =
𝜇

𝜇+𝛾
, 

rearranging implies: 

𝜇 =
𝐶𝐹𝑅 × 𝛾

1 − 𝐶𝐹𝑅
 

Therefore, to achieve a CFR of 0.33  when the recovery rate remains at 
1

14
, 𝜇 = 0.036.   

2. Validate your estimate of 𝜇 by calculating the CFR you get using this value and the 

recovery rate. 

Solution: Putting in these values gives 𝐶𝐹𝑅 = 0.33 . 

 

3. In order to have this lower CFR, does this mean that on average people are dying quicker 

or slower than the initial 7 days that we estimated? 

Solution: The average time to die under this new death rate is 28 days, which is four times slower 

than the original 7 days.  

 

4. Corroborate your findings by re-running your model with this new death rate.  

Solution: 

 



As we did above, at day 28 316,737.6 people have died. This results in a CFR of 0.317, which is 

close to the true value of 0.33. As we only run the model to 28 days, which is the average time to 

death, the model needs to run for slightly longer to reach this value. For example, if we run the 

model for 40 days, we get that the CFR is 0.329. 

 

 

Extension: Running the model under the biased parameters from Part 1 

If you have completed the rest of this practical, let us consider the following example. We now 

return to the original model parameters of 14 days to recovery and 7 days to death, on average. 

Recall that when we estimated these parameters with truncated data, we estimated 6 days to 

recovery and 4.7 days to death.  

1. Run the model with truncated estimates. 

Solution: 

 

2. What is the CFR under these estimates? Calculate this value in both the ways that we 

have done above. 

Solution: Both methods give CFR of 0.561. 

3. Comment on the results. What happens to our understanding of the CFR when we work 

with biased parameter estimates? 

Solution: We are underestimating the CFR.  


