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Background 

When a new infectious disease emerges, policymakers are faced with a range of unknowns that 

they have to respond to quickly. In the early stages of an outbreak, mathematical modelling is a 

particularly useful tool to answer questions such as: whether hospitals will have the capacity to 

treat all patients requiring care; how many people will die from the disease; how long it will take 

for infections to peak. We can use mathematical models to assist with these questions, but we 

need to be able to parameterise them using relevant data.  

We consider a situation in which there is a new disease and patients are being admitted to 

hospital. You are tasked with estimating the average time it takes for an infected person to either 

recover or die.  

We will be doing our analysis in R studio. A script is provided with all code also provided in boxes 

at the relevant question in this handout. 

 

Objectives 

• Estimate the mean time to recovery and death of patients. 

• Understand the impact on estimates if using truncated data. 

• Correct estimates derived from truncated data. 

 

 

Getting started 

Navigate to the odin interface https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-2022/ in 

Chrome or Safari. 

In the Tuesday section, “Deriving model parameters from data”, click on “Download script.R”. 

 

 

 

 

 

https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-2022/


Example 1: Estimating the mean time to recovery 

A doctor from the local hospital has recorded the number of days that it has taken the first 100 

patients to recover from the disease: 

 

1, 12, 6, 7, 10, 9, 21, 9, 8, 7, 3, 9, 2, 8, 25, 12, 30, 3, 3, 6, 

9, 8, 4, 13, 7, 6, 4, 13, 37, 6, 4, 78, 6, 12, 10, 5, 21, 7, 5, 15, 

 7, 4, 23, 13, 7, 19, 8, 2, 5, 4, 1, 22, 3, 22, 3, 59, 3, 11, 20, 8, 

 4, 5, 16, 2, 23, 4, 2, 17, 3, 3, 16, 5, 2, 10, 4, 9, 2, 5, 9, 1, 

 2, 7, 12, 8, 8, 15, 8, 8, 5, 4, 7, 4, 4, 10, 16, 12, 4, 11, 11, 10 

 

On average, how long does it take patients to recover? 

 

1. Read the data into R using the following code: 

 

 

2. Use a histogram to look at the distribution of the data. What continuous probability 

distribution best describes them? (Eg. Normal, Exponential, Gamma, …) 

 

Solution: The data are not normally distributed. Because of the small sample size, it is difficult to 

definitively assign a distribution to these data. However, an exponential distribution is appropriate.  

 

recovery_data <- c(1, 12, 6, 7, 10, 9, 21, 9, 8, 7, 3, 9, 2, 8, 25, 12, 30, 3, 3, 6, 9, 

                   8, 4, 13, 7, 6, 4, 13, 37, 6, 4, 78, 6, 12, 10, 5, 21, 7, 5, 15, 7, 4, 

                   23, 13, 7, 19, 8, 2, 5, 4, 1, 22, 3, 22, 3, 59, 3, 11, 20, 8, 4, 5, 16, 

                   2, 23, 4, 2, 17, 3, 3, 16, 5, 2, 10, 4, 9, 2, 5, 9, 1, 2, 7, 12, 8, 8, 

                   15, 8, 8, 5, 4, 7, 4, 4, 10, 16, 12, 4, 11, 11, 10) 

hist(recovery_data, freq = FALSE, 

     breaks = 20, bty = "n", xlab = "Time to recovery (days)", main="") 



 

 

 

3. What is the mean recovery time? 

 

Solution: 10.13 days. 

 

4. Consider how the mean recovery time changes as the sample size increases. Do you 

notice any convergence? 

 

Solution: As we increase the sample size to include all of the recovery times above, we see that 

the estimated mean converges to the overall mean when we have approximately 90 observations. 

mean(recovery_data) 

n_sample <- 1: length(recovery_data) 

estimator_over_n <- cumsum(recovery_data) / n_sample 

plot(estimator_over_n, 

     xlab = "Sample size", 

     ylab = "Estimated mean time to recovery", 

     bty = "n") 

abline(h = mean(recovery_data), lty = 2) 



As the sample size increases, the variability in the estimate decreases and thus we can have 

more confidence our estimate.  

 

 

Example 2: Estimating the mean times to recovery or death  

 

In Example 1, all of the initial patients recovered. Unfortunately, this is extremely unlikely to be 

the case in reality when faced with an emerging infectious disease. There are competing risks of 

whether an individual will recover or die.  

We are now going to flash forward to the end of the first wave of this outbreak. Colleagues in a 

neighbouring state have analysed all of the patients admitted to their hospitals in order to estimate 

the mean time to recovery or to death (the outcome). We don’t get to see their data, but we can 

see that they modelled them using an exponential distribution.  

Let us consider an example for the time to recovery, noting that the procedure is identical for the 

time to death.  

Let 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛 denote the 𝑛 observed times for each patient to recover.  

Recalling that if a random variable 𝑋 has an exponential distribution, then 𝑓(𝑋; 𝜆) = 𝜆 exp(−𝜆𝑥)is 

the probability density function.  

The likelihood of the observed data is: 

𝐿  =  ∏𝑓(𝑥𝑖; 𝜆)
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The log-likelihood is: 

𝑙  =  𝑛 log(𝜆)   −  𝜆∑𝑥𝑖

𝑛

𝑖=1

 



To find the Maximum Likelihood Estimator (MLE), we differentiate the log-likelihood, set this equal 

to zero and solve for 𝜆: 
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By following this procedure, the researchers estimated that: 

𝜆𝑟̂ =  
1

14
 

𝜆𝑑̂ =  
1

7
 

This means that, on average, patients who recover do so in an average of 14 days, and patients 

who die do so in average of 7 days.  

We can use this information to simulate plausible times to recovery and death and then consider 

the differences in these two distributions.  

1. Sample 1000 observations from each of these distributions. (Note: the set.seed() function 

ensures that we all get the same sample each time. Without this, there would be slight 

variability in the results.)  

 

 

2. Use the head() function in R to look at the first 20 simulated times to recovery and death. 

 

 

 

 

 

set.seed(2904) 

data <- data.frame( 

  recovery = round(rexp(1000, 1 / 14)), 

  death = round(rexp(1000, 1 / 7))) 

head(data, 20) 



3. Using the formulae above, what are the MLEs of your two samples (time to recovery and 

time to death)?  

 

Solution: MLE recovery: 0.070; MLE death: 0.150. 

 

4. What does this translate to in terms of the mean number of days until the outcome? Verify 

your calculation by using the mean() function.  

 

Solution: Based on the MLEs, we estimate an average of 14.26 days to recovery and 6.69 days 

to death. This is extremely close to the observed values of 14 and 7 days. We get the same values 

when using the mean() function on our directly rather than having to calculate the MLE explicilty 

as above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

length(data$recovery)/sum(data$recovery) 

length(data$death)/sum(data$death) 

1/(length(data$recovery)/sum(data$recovery)) 

1/(length(data$death)/sum(data$death)) 

mean(data$recovery) 

mean(data$death) 



5. Consider how the mean time to recovery and mean time to death change as the sample 

size increases. Do you notice any convergence? 

 

 

 

Solution: As in Example 1, we observe convergence to the mean outcome time as the sample 

size increases. 

n_sample <- 1:nrow(data) 

estimator_recovery <- cumsum(data$recovery) / n_sample 

estimator_death <- cumsum(data$death) / n_sample 

plot(estimator_recovery, 

     xlab = "Sample size", 

     ylab = "Estimated mean time to outcome (days)", 

     bty = "n", 

     col = "blue", 

     ylim = c(0, max(estimator_recovery))) 

points(estimator_death, 

       col = "red") 

abline(h = mean(data$recovery), col = "blue", lty = 2) 

abline(h = mean(data$death), col = "red", lty = 2) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 3: Analysing truncated data 

During an outbreak, data involving the time to an event are often subject to survival bias. For 

example, in the first two weeks of an outbreak, you only know what has happened in those two 

weeks and not what will happen to patients in the future. It is possible that a patient alive on day 

14 could die on day 15.  

 

 

Figure: Example of data that could be missed when conducting an analysis early on in an 

outbreak. If we analyse data before the wave is over, we lose the three data points in the grey 

shaded box. Estimating parameters on the remaining subset of data biased our estimates of the 

time to recovery and death. Crosses indicate death and ticks indicate recovery.  

Now imagine that your colleagues from Example 2 want to estimate the time to each outcome at 

the second week of the outbreak. We only know the outcomes of patients up to this time, and so 

we will remove everyone else from our analysis in this question. We want to investigate how this 

would change our estimates of the time to outcome.  

1. Truncate the data generated in Example 2 to observations less than 14 days. 

 

 

2. How many observations are there, what is the MLE and what is the mean of: 

a. Time to recovery? 

truncated_recov <- data$recovery[which(data$recovery <= 14)] 

truncated_death <- data$death[which(data$death <= 14)] 



 

Solution: Only 633 patients have a recovery time less than 14 days meaning that we have lost 

around 1/3 of our cohort. The MLE is 0.168. The mean recovery time is 6.0 days, which is 

substantially less than the 14 days that we know is the true time to recovery. 

 

b. Time to death? 

 

Solution: 885 patients have a time to death of less than 14 days. This is less than within our cohort 

of patients who recover, as we know that the time to death is shorter than the time to recovery. 

The MLE is 0.212. The mean time to death within the truncated sample is 4.7 days, compared to 

the true time to death of 7 days. 

 

 

3. Consider how the mean time to recovery and mean time to death change as the sample 

size increases. Do you notice any convergence? 

length(truncated_recov) 

length(truncated_recov)/sum(truncated_recov) 

mean(truncated_recov) 

length(truncated_death) 

length(truncated_death)/sum(truncated_death) 

mean(truncated_death) 



 

Solution: The samples converge to the sample mean, but as we established above this is 

substantially different from what we know the true outcome times to be. If we based our estimates 

on these data alone, we would estimate a much shorter outcome time than is the case. This would 

impact on the results of our mathematical model that we are looking to parameterise with this 

information. 

Truncation is a common problem in epidemiological data and it is important to be aware of this 

when analysing event data. 

n_recov <- 1:length(truncated_recov) 

n_death <- 1:length(truncated_death) 

biased_estimator_recov <- cumsum(truncated_recov) / n_recov 

biased_estimator_death <- cumsum(truncated_death) / n_death 

plot(biased_estimator_recov, 

     xlab = "Sample size", 

     ylab = "Estimated mean time to outcome (days)", 

     bty = "n", 

     col = "blue", 

     ylim = c(0, max(estimator_recovery))) 

points(biased_estimator_death, 

       col = "red") 

abline(h = mean(data$recovery), col = "blue", lty = 2) 

abline(h = mean(data$death), col = "red", lty = 2) 



 

 

Example 4: Adjusting for truncated data 

We have seen that analysing data early on in the outbreak will be subject to bias, in that only 

events which happen up until that time are included in the analysis. As demonstrated above, this 

could substantially lower our estimates of the outcome time and thus give us a false picture of the 

dynamics of the disease.  

We can adjust our estimation procedure to account for the fact that our data are truncated.  

If a random variable 𝑋𝑇 is distributed according to a truncated exponential distribution, then 

𝑓(𝑋𝑇;  𝜆 ) =
𝜆 exp(−𝜆𝑥𝑇)

1−exp(𝜆𝛽)
  

where 𝛽 is the truncation time.  

We can follow the steps as above to calculate the MLE, but this involves more complicated 

mathematics. We shall instead deploy a built-in function in R, uniroot(), to estimate the MLE under 

this different likelihood function. 

 

 

 

 

 

 

 



1. Run the function titled truncation_adjusted_MLE() using the code below. 

 

 

2. Use the function to work out the MLE and average outcome time for recovery and death, 

and compare this to what we observed in Example 2. 

a. Time to recovery 

 

Solution: The MLE is 0.066 which gives a mean outcome time of 15 days.  

In Example 2, the MLE was 0.070 with a mean outcome time of 14 days. Therefore, we have 

mostly recaptured the information lost from truncating the data to 14 days, but have slightly 

overestimated what we know the true value to be observed at the end of the first wave. 

 

b. Time to death 

 

Solution: The MLE is 0.129 which gives a mean outcome time of 7.8 days.  

In Example 2, the MLE was 0.150 with a mean outcome time of 7 days. As above, we have slightly 

overestimated but are much closer to the true value than we were under the truncated data without 

adjustment. 

truncation_adjusted_MLE <- function(data, trunc_cut_off = 14){ 

  dL <- function(lambda, n = length(data), sum_obs = sum(data)){ 

  n / lambda - sum_obs - ((n*trunc_cut_off*exp(-lambda*trunc_cut_off))/(1 - exp(-

lambda*trunc_cut_off))) 

} 

  f_zero <- function(lambda){ 

    dL(lambda, n = length(data),sum_obs = sum(data)) 

  } 

   ML_sol <- uniroot(f_zero, interval = c(1e-6, 1e6)) 

    return(list("MLE" = ML_sol$root, 

              "average_outcome" = 1/ML_sol$root)) 

} 

truncation_adjusted_MLE(data = truncated_recov) 

truncation_adjusted_MLE(data = truncated_death) 



 

Extension: Biased estimates under different truncation times 

This is an optional extra for this practical for those who have time.  

Using what we have learned so far in this practical, can you analyse the effect of different 

truncation times on the estimates of the mean outcome times? 

 

Solution: Use the code to estimate the naïve and adjusted outcome times for different truncation 

times. 

 

truncation_adjusted_MLE_extension <- function(df = data, trunc_cut_off){ 

   # truncate original data 

  data_recov_trunc <- df$recovery[which(df$recovery <= trunc_cut_off)] 

  data_death_trunc <- df$death[which(df$death <= trunc_cut_off)] 

  ## naive MLE and outcome time  

  ##recovery 

  MLE_naive_recov <- length(data_recov_trunc)/sum(data_recov_trunc) 

  average_outcome_naive_recov <- 1/MLE_naive_recov 

  #death 

  MLE_naive_death <- length(data_death_trunc)/sum(data_death_trunc) 

  average_outcome_naive_death <- 1/MLE_naive_death 

  ### adjusted for truncation 

  ## recovery 

  dL_recov <- function(lambda, n = length(data_recov_trunc), sum_obs = 

sum(data_recov_trunc)){ 

    n / lambda - sum_obs - ((n*trunc_cut_off*exp(-lambda*trunc_cut_off))/(1 - exp(-

lambda*trunc_cut_off))) 

  } 

 



 

 

  f_zero_recov <- function(lambda){ 

    dL_recov(lambda, n = length(data_recov_trunc),sum_obs = sum(data_recov_trunc)) 

  } 

  ML_sol_recov <- uniroot(f_zero_recov, interval = c(1e-6, 1e6)) 

  ## death 

  dL_death <- function(lambda, n = length(data_death_trunc), sum_obs = 

sum(data_death_trunc)){ 

    n / lambda - sum_obs - ((n*trunc_cut_off*exp(-lambda*trunc_cut_off))/(1 - exp(-

lambda*trunc_cut_off))) 

  } 

   f_zero_death <- function(lambda){ 

    dL_death(lambda, n = length(data_death_trunc),sum_obs = sum(data_death_trunc)) 

  } 

  ML_sol_death <- uniroot(f_zero_death, interval = c(1e-6, 1e6)) 

  return(c("trunc_cut_off" = trunc_cut_off, 

    "MLE_naive_recov" = MLE_naive_recov, 

              "average_outcome_naive_recov" = average_outcome_naive_recov, 

              "MLE_naive_death" = MLE_naive_death, 

              "average_outcome_naive_death" = average_outcome_naive_death, 

              "MLE_adjust_recov" = ML_sol_recov$root, 

              "average_outcome_adjust_recov" = 1/ML_sol_recov$root, 

              "MLE_adjust_death" = ML_sol_death$root, 

              "average_outcome_adjust_death" = 1/ML_sol_death$root)) 

} 



 

 

 

 

 

trunc_times <- seq(5,21,1) 

sens_analysis <- c() 

for(i in trunc_times){ 

  output <- truncation_adjusted_MLE_extension(df = data, trunc_cut_off = i) 

  sens_analysis <- rbind(sens_analysis,output) 

} 

sens_analysis <- data.frame(sens_analysis) 

ylims <- c(0, 40) 

plot(sens_analysis$trunc_cut_off, sens_analysis$average_outcome_naive_recov, 

     col = "blue", bty = "n", type = "l", ylim = ylims, 

     ylab = "Average time to recovery (days)", xlab = "Truncation time (days)") 

lines(sens_analysis$trunc_cut_off, sens_analysis$average_outcome_adjust_recov, 

      col = "red") 

legend("topright", legend = c("Naive", "Adjusted"), col = c("blue", "red"), 

       lty = 1, bty = "n") 



 

 

As we increase the truncation time from 5 days to 21 days, the naïve estimate of average time to 

recovery slowly increases but doesn’t quite converge to the true value. However, the adjusted 

estimate (derived from the adjusted likelihood) does for higher truncation values.  

 

 

A similar trend is observed for the naïve estimate of time to death, but in this instance the adjusted 

estimate hasn’t quite converged to the observed value by 21 days (although it is close).  

 

ylims <- c(0, max(sens_analysis$average_outcome_adjust_death)) 

plot(sens_analysis$trunc_cut_off, sens_analysis$average_outcome_naive_death, 

     col = "blue", bty = "n", type = "l", ylim = ylims, 

     ylab = "Average time to death (days)", xlab = "Truncation time (days)") 

lines(sens_analysis$trunc_cut_off, sens_analysis$average_outcome_adjust_death, 

      col = "red") 

legend("topright", legend = c("Naive", "Adjusted"), col = c("blue", "red"), 

       lty = 1, bty = "n") 



 

 

 


