
Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 1 

Imperial College London – Zambart 

Workshop on Analysing and modelling epidemic data 

 

 

Practical 2: Introducing Odin as a tool for modelling. 

Dr Pablo N Perez-Guzman 

Adapted from materials from Drs Lucy Okell & Lilith Whittles 

 

 

The aims of the practical are:  

• To familiarise yourselves with the modelling software interface odin/R.  

• To understand the concept, utility and limitations of numerical integration.  

 

 

In this hand-out, generally: 

► Indicates an instruction. 

► Indicates a useful tip or note. 

► Indicates a question.  

 
All practicals and projects for this short course will use a web-based interface. The 
underlying programming language is R. We will be using the “odin” R package with a Shiny 
interface during the next two weeks. A general help file about the odin interface is available 

in your folders and as a separate url. Each tab will have a (help) button which will 
contain more useful tips.  
 
  

http://www.imperial.ac.uk/cpd/epidemiology


Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 2 

Example 1: Exponential growth  

► Navigate to the odin interface https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-lusaka-

2022/ in Chrome or Safari.  
 
► Click on “Practicals (Week 1), then “Go to App” The first window you see will be the 
[Editor tab].  
 
 
The first model you will solve is that of a population whose size changes at a constant per 
capita rate proportional to the population size. We denote N(t) as the population size at time 

t and a the rate of change in population size. 

 
In equation form, the model is  
 

𝑑𝑁

𝑑𝑡
=  𝑎𝑁 

 
with the initial condition N = N0 when t = 0.  

 
 
► Type the following into the blank Editor window exactly as follows: 
# variable 

deriv(N) <- a * N  
 

Each variable, in this case “N” the population size, is specified by `deriv(variable)`. That is, in 
R language deriv(N) for dN/dt specifies that N is a quantity that changes over time. 

 

  

 
 
 
To fully specify the model, you must also give the value of the population size at the start (in 
this case time 0) of the simulation (the initial value N(0)).  
 
 

http://www.imperial.ac.uk/cpd/epidemiology


Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 3 

► The “#” is used to “comment out” code in the Editor tab. It is good practice to comment 
your work as much as possible so that you can understand what you did when you return to 
a file.  

 
► Caution: do not use the browser “back” button as you will lose any unsaved work. 
We recommend that you save your code regularly.  
 
 
► Now type in the following: 
initial(N) <- N0  
 
 
You must now give some numerical values to the parameters of the model.  
► Type: 
a <- user(0.5) 

N0 <- user(1) 

• The ‘user’ part means the Shiny “odin” app will allow you to vary the parameter. 
 
 
► Use the Validate button to check for any errors in the model code (or click the Auto 
validate tick-box to do this as you type). You will then see ‘Validation: success’ or ‘Validation: 
error’.  

• Note that you can load code from an existing model from file (from a previous 
practical, for example) using Browse and edit it if you wish, rather than write code 
from scratch.  

 
 
► When you are happy with your model, click “Compile”. 

• If there are any errors, fix them and compile again until you have no more errors.  
 
 
► You can save the model code using the Save button just below the code editor. This will 
download a file with extension “.R” containing your model code (which is usually stored in 
your local ‘Downloads’ folder depending on your browser and computer set up. Don’t forget 
to save your work. NB disconnection from the internet can erase the current model if 
unsaved). 
 

 
► In the Visualise tab you can 
visualise the model output. 
Notice on the left under ‘Model 
parameters’, the values you 
entered for N0 and a are 
displayed.  
► Under “Run options” specify 
the “End time” by typing 20. 

• This is how long the 
model will be run for 
(number of time steps).  

 
 

► Click Run model to visualise 
your model outputs. 

http://www.imperial.ac.uk/cpd/epidemiology


Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 4 

• Initially this will use default values for parameters, but you can manually change 
parameter values to see how they affect your model dynamics.  

 

 
► In the Visualise tab under “Model parameters”, change the value of a from 0.5 to 0. Click 

Run model again to visualise your model outputs after changing your parameter values.  

• The growth rate is 0. The population size N, as seen in the Run window, is now 
constant over time.  

 
► Change the value of a again, this time to -0.5 Click ‘Run model’. 

• The population size N, as seen in the Run window, now declines exponentially. a is 
the decay rate.  

 
 
► At the top of the Visualise tab, click on ‘Reset’. 

• This resets the value to the value of the parameter ‘a’ to be the same as in the code 
Editor tab, i.e. 0.5. This will also “reset” the “End time” so remember to re-enter it.  

► In the Editor tab, add an additional output variable. Type:  
output(N_analytical) < - N0 * exp(a * t)  
 
 
Use ‘output(variable)’ for variables which do not need to be calculated by a differential 
equation. Here “t” is implicitly time and does not have to be defined.  
 
 
Compile, then in the Visualise tab, run the model. You should see the output “N_analytical”. 
Click on ‘N_analytical’ at the top right of the graph to remove it from the plot, then click again 
to add it back. Compare it with ‘N’ - what do you notice?  
 
 
► In general, to add or remove variables on the plot, simply click the variable name in the 
top right of the graph.  
  

 
 

 

http://www.imperial.ac.uk/cpd/epidemiology


Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 5 

► See the Appendix at the end of this practical if you are interested in the derivation of 
N_analytical.  
 
 
► You can separately save parameter sets or tables of model outputs from the Visualise 
tab (using the Download buttons in the bottom right corner or at the bottom of the model 
parameters section).  
 

► You can save plots by clicking on the icon. This will download a .png file of your plot.  
 
 

► From the ‘Graph Settings” underneath the plot window , select ‘log scale 
y-axis’  
 
 
Now, with a log-scale axis, the population changes as a straight 
line. Notice however how the large numbers on the left axis now 
increase in multiples of 10. This is in fact the definition of a log-
scale: exponential growth and decline appears as a straight line. 
If you want to see whether your data grows or decline 
exponentially, plot it on a log scale.  
 
 
► The “graph settings” dialog box under the plot will also let you 
choose whether to plot variables on the right or left axis.  
 
 
► Clicking on “Model Code” underneath the plot will expand a 
window that allows you to see your model code in the “Editor 
tab” in the same window as your model run. 

 
 
Running sensitivity analysis 
 
► In the Sensitivity tab under “Model parameters”, vary the 
value of a from -10% to +10%. Remember to set a value for “End 
time” (e.g. to 20). Click Run model to visualise your model 
outputs.  

• Note that, to visualise an output variable, you will need to 
click the variable name in the top right of the graph. 

 
  

http://www.imperial.ac.uk/cpd/epidemiology


Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 6 

Example 2. Modelling an infected cohort 
 
As you saw in practical 1 today, it is always good practice to start your model simple and 
then build in complexity as and when needed. The simplest compartmental model you can 
conceptualise is that of an infected cohort. 
 
Note that this is not yet a transmission model (i.e. there is no infectious disease transmission 
going on). Rather, this is just simulating a cohort of infected people that will go on to recover 
at an exponential per capita rate 𝛾. 

 

 
Step 1: the model.  
 
This basic cohort model has only two compartments, I and R, and is written:  
 

𝑑𝐼

𝑑𝑡
=  −𝛾𝐼 

 
𝑑𝑅

𝑑𝑡
=  𝛾𝐼 

 
Recall that: 

• Mean duration of infectiousness = 1 /  𝛾 

• So, the inverse will be the recovery rate  
 

𝛾 =
1

𝑚𝑒𝑎𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠
  

 
 
We are going to write the model from scratch. 

► Navigate back to the odin interface https://shiny.dide.ic.ac.uk/infectiousdiseasemodels-

lusaka-2022/ in Chrome or Safari.  
► Open a new Editor tab and write out the equations for the model above. Each state 
variable (i.e. I and R) should be initialised (e.g. initial( S ) < - ...) and defined (e.g. with the 
deriv( I ) < - ...). The initial values add up to the total population size, for example 1,000 (you 

can choose a number). Variables can take any name (eg. gamma for 𝛾) just as long as there 
is no repetition and that they are given a value (see section below). 

• Assume the time to recovery from this infection is, on average, 10 days 

 
► Once you are happy with your code, go to the Visualise tab and click “Run model”. You 
should see something like this 

 
 

http://www.imperial.ac.uk/cpd/epidemiology


Workshop on Analysing and modelling epidemic data: www.imperial.ac.uk/cpd/epidemiology 
Copyright © Imperial College London 2022. All rights reserved. Not for reproduction or distribution. 7 

Appendix. Population with constant per-capita growth rate model: analytic solution  
 
In the first part of the practical, you were given a model of constant per-capita population 
growth. This is an example of a model which can be solved analytically (i.e. by hand using 
algebra) as well as numerically (e.g. using odin), unlike more complex compartmental 
models (e.g. SIR model) which we will cover later in this workshop. 
 
Here we show workings for solving a differential equation model via integration to derive the 
analytic solution shown in the lecture:  
 
The model equation is:  
 

𝑑𝑁

𝑑𝑡
=  𝑎𝑁 

 
where N is the number of individuals in the population, t is time, and a is the constant per- 
capita growth rate.  

 
First, we rearrange to put all the terms containing N on one side of the equation (multiply 
both sides by dt, and divide both sides by N):  
 

1

𝑁
𝑑𝑁 =  𝑎𝑑𝑡 

 
Then apply the indefinite integral to both sides: 
 

∫
1

𝑁
𝑑𝑁 =  ∫ 𝑎𝑑𝑡 

 

 
Note that on the left hand side equation, we will integrate with respect to N, whilst on the 
right hand side, we will integrate with respect to t. 
 

∫
1

𝑁
𝑑𝑁 = ln (𝑁)  and ∫ 𝑎𝑑𝑡 = 𝑎𝑡 

 

Using these standard integrals, we obtain ln(𝑁) = 𝑎𝑡 + 𝐶, where C is the constant of 

integration. We exponentiate both sides of the equation to obtain:  
 

N =  𝑒𝑎𝑡+𝐶 
 

By the laws of indices and by noting that 𝑒𝐶 is still a constant, we can rewrite this as: 

 

N =  𝑒𝑎𝑡𝐶 

 
Now we set initial value (boundary) conditions in order to solve for the constant C. To obtain 
a simple result, we choose t = 0, which gives the following equation for N at time 0: 
 

𝑁(0) =  𝑒𝑎·0𝐶 
 

Since 𝑒𝑎·0 =  𝑒0 = 1, 𝐶 = 𝑁(0) and replacing C in our above equation with N(0), we obtain 

our general solution:  
𝑁 = 𝑁(0)𝑒𝑎𝑡 

http://www.imperial.ac.uk/cpd/epidemiology

