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2009 H1N1 influenza virus (source: CDC) 

Background 
Pandemics arise when a new virus capable of human-to-human transmission 
emerges that is sufficiently distinct from circulating viruses so that the level of 
population immunity is low or nil. New strains emerge by transfer from a zoonotic 
reservoir. Exactly how new viruses emerge is not clear and may differ for different 
pandemics. Possibilities include genetic re-assortment or recombination between 
human and avian viral strains, possibly via intermediary species (e.g. pigs, poultry or 
other animals), or by gradual accumulation of adaptive mutations.  
The potential for pandemic viruses to cause significant mortality is illustrated not only 
by SARS-CoV-2, the causative agent of COVID-19, but also the 1918-20 H1N1 
‘Spanish flu’ which is estimated to have killed at least 20,000,000 people worldwide. 
Note however that the much lower mortality caused by the 1957 H2N2 ‘Asian flu’, the 
1966 H3N1 ‘Hong Kong flu’ or the 2009 H1N1 pandemics shows that devastation is 
not an inevitable result of a pandemic but depends on the biology of each new strain 
as well as the impact of interventions.  
Preparedness is greatly helped by knowledge of the epidemiological determinants of 
virus spread, such as the basic reproduction number R0 and the duration of 
infectiousness. The aim of this practical is to estimate some of these quantities. 
Objectives 
From a methodological perspective, the practical will introduce you to some of the 
methods and issues surrounding parameter estimation in epidemic models. More 
specifically, we are going to use 2 different methods to estimate the reproduction 
number from epidemic data. In part 1 of the practical, we will use the tree 
reconstruction method called EpiEstim, and in part 2 we will estimate the 
reproduction number by fitting a compartmental SIR model to the epidemic curve. 
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We are going to consider data from a school outbreak of H1N1 pandemic influenza 
virus which occurred in Pennsylvania in 2009 (data from Cauchemez et al, PNAS, 
2011; paper attached to practical). 
 

Part 1 
Using tree reconstruction methods to estimate the reproduction number   
Fitting a transmission model to data imposes making a range of assumptions for 
example about the population size or the initial proportion of susceptibles in the 
population. Rather than making such assumptions, we are now going to use tree 
reconstruction methods described in the lecture to estimate the instantaneous 
reproduction number Rt in the school.  
For this, we only need the epidemic curve and the distribution of the generation time. 
In this section we talk about serial interval as a synonymous with generation time. 
We will use the same incidence dataset as in section 1. 

Ø Open the influenza.txt file to see the incidence data 
 

Ø Open the Excel file EpiEstim.xls 

There are several sheets in it: Readme, Data, Output1 serial interval, Output2 R 
estimates and Figures. Readme will provide you with information on how to use the 
document, which is summarized in the following.  
 
Data is the only sheet you have to modify; only light coloured cells have to be 
modified.  

 
1. Fill in the Incidence section as shown in Snapshot 1; this will be done only 

once as we will only look at one dataset. Take 1 and 32 as the Min and Max times to 
match the data.  
Snapshot 1: 

 
 

2. Specify your assumptions about the serial interval distributions (see 
snapshot 2). 
Snapshot 2: 
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In a first analysis, we will use a FIXED parametric serial interval with mean 1.18 day 
and sd 0.96 day. Fill in the cells shown in red and yellow in Snapshot 2 accordingly. 
 

3. Specify the time windows you want to use (see snapshot 3). Keep the 
posterior coefficient of variation to its default value of 0.3 
Snapshot 3: 

 
In a first analysis, we will explore the temporal variations of the reproduction number. 
For this, choose non-custom weekly sliding windows with a one-day lag between two 
successive windows (yellow and blue cells).  
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4. Specify the prior mean and standard deviation (see snapshot 4). Keep the 
default values of 5 and 5.  
Snapshot 4: 

 
5. Enable Macros 

Click the File Menu and select Options from the left sidebar. In options, select Trust Center 
from the left sidebar and click Trust Center Settings button on the main window.  

Now in Trust Center Settings dialog window, select Macro Settings from the left sidebar, 
choose Enable All Macros option and hit OK.  

6. Run the estimation!  
Snapshot 5: 

 
 

7. Results are presented as tables in sheets “Output1 serial interval” and 
“Output2 R estimates” and as figures in sheet “Figures”. 
 
What is your estimate of the initial R? How does it compare with the estimate of 
Cauchemez et al.? See highlight in Cauchemez et al, page 5. 

- Mean 1.36, 95% credible interval 0.78-2.10 
In Cauchemez et al: Mean 1.4, 95%CI 1.2-1.5 
Our point estimate is similar, but we find more uncertainty. This could be due to us 
using only 1 week of data versus Cauchemez et al. using 2 weeks of data to derive 
the estimate. 
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When does your mean R estimate fall below the threshold 1?  

The week from day 13 to day 19  
 

What happens at the end of the epidemic (look at the third figure)? What is a 
possible explanation?  

- The mean R estimate goes up at the end of the epidemic, because of the few late 
cases. Given the serial interval distribution it is very unlikely to have 4 days with 
no incidence and then 2 incident cases, unless R is very high. The explanation is 
that those cases were probably infected outside the school rather than in the 
school. 

 

 
Impact of school holidays 
The school closed during time interval day 18-day 24. Repeat the analysis using the 
following custom time windows (Change the yellow and green cells in Snapshot 3):  
Day 1 to 17 

Day 18 to 24 
Day 25 to 31 

What are your estimates for R before, during and after the holidays? 

- Before: Mean 1.17 , 95% credible interval 0.95-1.41 
- During: Mean 0.70 , 95% credible interval 0.46-1.00 
- After: Mean 1.1 , 95% credible interval 0.36-2.25 
 

What is the estimated reduction in the reproduction number during school closure 
compared to before school closure? How does that compare to the one obtained by 
Cauchemez et al (see highlight, page 4)?  
Point estimate of reduction is (1.17-0.7)/1.17=40% here as opposed to 30% in 
Cauchemez et al – so they are roughly consistent. The slightly weaker effect in 
Cauchemez et al. could be due to us considering before versus during school 
closure and them considering (before+after) versus during closure. 
 

Is the effect statistically significant? How does that compare to Cauchemez et al.? 

- The two 95% credible intervals (0.95-1.41 before and 0.46-1.00 during school 
closure) are overlapping hence we don’t find a significant effect. Cauchemez et al 
also found that the effect was not significant. 

 

How do you think underreporting would affect R estimates? Would underreporting 
have an effect if the level of reporting was constant over time? 
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Changes in the reporting rates over time would bias the estimates.  
However, the estimates would not be affected if underreporting is constant, 
regardless of the specific proportion of reported cases. 
 

 

Part 2 
 

Estimating the reproduction number by fitting a dynamical transmission model  
In part 2 of the practical we are going to learn how to estimate the reproduction 
number using a compartmental model fitted to time series data.  
Fitting a model and estimating parameters  
For this analysis, we are going to make the following simplifying assumptions: 1) the 
outbreak in the school was closed (i.e. there were no importations and exportations 
of cases); 2) there was homogeneous mixing in the school; 3) there is no latent 
period and cases are infectious for the entire time they are infected; 4) we ignore 
issues of missing data and censoring in the data (see Cauchemez et al, PNAS, 2011 
for an analysis of the data dealing with these problems). 
 

Here, we will consider a simple SIR model:  

 
N = S + I + R 

Differential equations: 
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Other helpful equations and how they can be rearranged: 

																				R0	=	𝛽	/	g	 	 OR		 𝛽	=	R0	/	D	 OR		 R0	=	𝛽	*	D	

																				D	=	1	/	g	 														OR	 g	=	1	/	D	

	

 
Download the data and models 
Access the odin app by following the link in the supporting files, or using the 
following link: https://shiny.dide.imperial.ac.uk/infectiousdiseasemodels-2021/flu/ 
 
Beneath the link to load the odin app in supporting files, click the link “Influenza data” 
which will download “influenza_data.csv”. Save this file in a convenient place. Then 
click the links “Pennsylvania, basic” and “Pennsylvania, with school closures” which 
should download “solution1.R” and “solution2.R” retrospectively and save these in 
the same folder as “influenza_data.csv”. 
Run the model and link to the data 
→ Open the app and move to the “Data” tab if not there automatically.  
→ Click “Browse” and select “influenza.csv” in the location you saved it. 
→ The data should appear as a graph and table.  

 
 “Cases” gives the daily number of children of the school with symptoms onset. 
 
 



 
Copyright © Imperial College London 2020. All rights reserved. Not for reproduction or distribution. 

8 
 

→ Move to the “Editor” tab, ignore the code currently there and load “SIR editor 
code.R” via the “Browse” tab within the “Editor tab”. 
 

 
 
 
→ The Editor tab should now look like the screen below: 

 
 
 

Initially all 370 children are susceptible, 
apart from a single imported case 

Define your transmission rate 
parameters 
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Look at how the SIR model is coded. What are the parameters D and I_0? (NB the 
model begins at Day 0 with the onset of the first case within the school”).  

 
D represents the mean duration of disease/infectiousness (here, remember we are 
assuming that cases are infectious for the entire duration that they’re infected) 
I_0 represents the initial infected case 
  

Click “compile” to compile the model.  
Now select the “Link” tab. Ensure there are tick marks to confirm the data has been 
successfully uploaded and model code has successfully been compiled. 
In the “Link” section we link the model to the data by specifying the variable in the 
model that is appropriate to fit to the data (i.e. “Cases”). Which variable is this?  

 
I, as it describes the daily number of infected children who attend the school. 
 

Now move to the “Visualise” tab. Guess a value for D and R_0 (all positive!) and 
click “Run model”.  
Manual fit 
You should now see a chart of the dynamics of the variables of the model over time 
for your chosen set of parameter values, alongside the case data. How does your 
choice of parameter values match to the data? (NB it will help to visualise if you 
deselect all but the relevant). The picture below gives one example (of a poor fit!).  

 
Vary the two parameters, how does each one affect the model output? Once you 
have a set of parameters which gives you a fit you’re happy with (NB don’t spend 
ages on this – if you haven’t got a set you’re happy with within, say, 5-10 minutes 
then just note down the set you think fits best of those you’ve explored so far).   
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(will vary from person-to-person but check that the values looks ok-ish) e.g. 
R0        = ~ 1.3 
D   = ~ 1.1 days 

 

Move to the “sensitivity” tab and enter your best fitting set of parameters. Under “vary 
parameter” select each parameter in turn and select “range”, specify a reasonably 
wide range of values for each parameter and 10 runs. Click “Run model”. Can you 
describe the effect each parameter has on your output? Understanding this may help 
you to find a set of parameters you are happy with… 

Varying D changes the width of the peak. As D increases the generation time 
increases, leading to slower spread for the same R0.  
 
For R0, after passing the threshold value of 1 epidemics begin to occur. Epidemic 
peaks higher but also peaks earlier as R0 increases. Not easy to see on the plot but 
the final size of the epidemic (total # infected before epidemic dies out) also 
increases with R0 but the epidemic finishes much more rapidly due to a faster 
depletion of susceptibles.  
  

 
 
Automated fit 
Now we will assess the extent to which we are as skilled as the computer in finding a 
good fit to the data. In the “Fit” tab enter the set of parameter values you think gives 
you the best fit.  This will replot the data, in the tab alongside a number called “sum 
of squares” – this is a weighted sum of the square of the differences between each 
data point and the variable you are fitting (i.e. if they were exactly the same the sum 
of the squares would be zero indicating a perfect fit).  
If there are more than one set of parameters you think give an equally good fit (or 
you had a different set before and after you visited the ‘sensitivity’ tab) compare the 
sum of squares and set the values to those that give you the smallest number (as 
this is the one closest to going through all of the data points). Now make sure R_0 
and D are all ticked (to include them in the fitting process) and click ‘Fit model’. Note 
down the fitted sum of squares.  

Sum of squares     =   
 
Auto fit parameters: 
R0       = 1.27 
D   = 1.03 days 
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The relationship between the epidemic growth rate r, the basic reproduction 
number R0 and the generation time Tg. 
The generation time Tg is the time it takes between infection of one individual and 
subsequent infection of others by that individual.  
If the epidemic growth rate r and the generation time Tg are known, it is possible to 
derive R0 from the following equation: 

 (2) 

where g(t) is the generation time distribution (i.e., the probability that the generation 
time is equal to t).  

 
For an SIR model, if the growth rate (r) and D are known, the equation for R0 can be 
simplified as follows: 

R0	=	1	+	rD				
If R0 and D are known, this can be rearranged to estimate r: 

r	=	(R0	–	1	)/	D	
And if r and R0 are known, the generation time (Tg) can be estimated: 
	 Tg	=	(R0	–	1)	/	r	
	

 
Based on this knowledge, what is the generation time, Tg, of the best-fitting model? 

r = (1.27 – 1) / 1.03 = 0.26 
Tg = (1.27 – 1) / 0.26 = 1.04 

 
Why does the generation time in the school appear to be shorter than the generation 
time in the household? See highlight in Cauchemez et al, page 2. 

Because transmission in the school is truncated compared to what it is in the 
household (mixing of infected pupils reduced by e.g., pupils staying away from 
school when symptomatic).    
 

How do your estimates of R and the generation time compare with those of 
Cauchemez et al? See highlight in Cauchemez et al, page 5. How does it compare 
with your estimate from EpiEstim? 

R=1.3 here compared to 1.4 in Cauchemez et al. 
Tg ~ 1 here compared to 1.5 in Cauchemez et al. 
The initial EpiEstim R estimate was 1.36. 
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Impact of school holidays 
 
The school closed during time interval day 18-day 24. We are going to try to estimate 
the impact of school closure.  
Head to the “Editor” tab, hit “Browse” and now select “school holidays.R” you 
downloaded earlier. This should then display code that has been modified so that the 
reproduction number is different when the school is open (R_0) and when the school 
is closed (R_0_closure).  
Hit compile! Then link the model and data in the “link” tab 
The “Visualise” and “Fit” tab should reflect the new model with the additional 
parameter. If not retrace your steps from the “Run the model and link to the data” 
section previously.  
Play around with this model to your hearts delight then redo the auto-fitting process, 
making sure you now tick three parameters (D, R_0, and R_0_closure). Repeat this 
a couple of time with different initial guesses to check the computer has identified a 
good solution (if different values, again use the one with lowest sum of squares):  
 

 
Sum of squares     = 102.3425 
R_0  = 1.29 
R_0_closure = 0.64  
D  = 1.27 days 
 

 
What is the estimated reduction in the reproduction number during school closure? 
How does that compare to the one obtained by Cauchemez et al (see highlight, page 
4) and the estimates from EpiEstim?  
Point estimate of reduction is (1.29-0.64)/1.29=50% here opposed to 30% in 
Cauchemez et al and 40% when using EpiEstim 
 

 
Is the effect of school closure statistically significant? 

There is an improvement in the sum of squares when school closure is accounted 
for. However, although odin is a nice tool to quickly explore model dynamics and fit 
models to data, it only provides point estimates. It does not provide a confidence 
interval for parameters (possible – but difficult to do). So here for example, we 
cannot determine whether the effect was significant. Cauchemez et al found that the 
effect was not significant (70%; 95% CI: 38%, 122%).   
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What are the aspects of the outbreak investigation that you haven’t accounted for 
and that may lead to bias estimates? 

- Many individuals were only interviewed after the peak. Observed decay after 
peak may therefore be sharper than what happened in reality. 

- Possible superspreading event early in the epidemic. 
- In practice, it didn’t appear to be homogeneous mixing. There was clustering of 

classes in classes. 4th graders were more affected for example. 
 

 
 
 
 
Summary and discussion 
After trying out these 2 methods of estimating R (EpiEstim vs model fitting), can you 
think of pros and cons of the different methods? What are the key sensitivities? 

 
EpiEstim vs model fitting:  
- pros: less assumptions on mechanisms, often more robust  
- cons: can’t distinguish between effect of reduction of susceptible population and 
reduction of transmission due to interventions 
 To estimate R0 from an epidemic curve, we need to make an assumption on the 
distribution of the generation time. Estimates are sensitive to the assumption made – 
they depend on the mean, but also on the shape and variance of the distribution of 
Tg. 

 
  
 
 
 

 
 


